Heavy flavour production at ATLAS

Semen Turchikhin on behalf of ATLAS Collaboration

Joint Institute for Nuclear Research

Heavy-quark hadroproduction from collider to astroparticle physics Mainz Institute for Theoretical Physics, Johannes Gutenberg University, Germany 30 September – 11 October 2019

Introduction

B-physics at ATLAS

- ▶ Possible to measure heavy flavour (HF) production at highest possible energies
- Much higher HF yields in pp environment compared to B-factories
- ▶ Possible to produce *all possible heavy states* → extended spectroscopy studies
- ATLAS and CMS, although not specially optimized for B-physics, provide complementary kinematic region to LHCb
 - Benefit from higher statistics in certain analyses
- This talk covers a selection of ATLAS results on heavy flavour production of few years
 Impossible to cover all interesting studies at once + a bit untypical scope of the Workshop
 → Feel free to ask and discuss offline!

Outline

- ATLAS detector
- Open heavy flavour production
 - Charmed meson production at 7 TeV Nucl. Phys. B 907 (2016) 717 C
 - ▶ b hadron pair production measurement at 8 TeV- JHEP 11 (2017) 62 🕑
 - ► ★ Relative B_c^+/B^+ production measurement at 8 TeV paper in preparation
- Hidden heavy flavour production
 - ▶ ★ High- $p_T J/\psi$ and $\psi(2S)$ production at 13 TeV paper in preparation
 - Heavy quarkonium production in *p*Pb (Eur. Phys. J. C 78 (2018) 171^C) and PbPb (Eur. Phys. J. C 78 (2018) 762^C)
 - ► ★ Search for pentaquarks in $J/\psi p$ system from $\Lambda_b \rightarrow J/\psi p K^+$ decays preliminary conference note in preparation
- ★ brand-new results released just this week for Beauty conference!

ATLAS detector and trigger for B-physics

- Inner Detector in solenoid field for reconstructing tracks and vertices
- Muon Spectrometer in toroid field for muon identification
- Trigger selection primarily bases on di-muon signature

JINR

4 / 26

Motivation

- \blacktriangleright Heavy quark production measurement at LHC \rightarrow test of pQCD calculations at highest possible energies
 - ► Charmed mesons are produced in *charm hadronization* and *b hadron decays*
- Various theoretical approaches available
 - Fixed-order + next-to-leading-logarithm (FONLL) predictions
 - General-mass variable-flavour-number-scheme (GM-VFNS) calculations
 - NLO QCD calculations matched to LL parton-shower MC
 - MC@NLO matched to HERWIG
 - POWHEG matched to HERWIG or PYTHIA

Scope of the study

- ▶ Three *D* mesons measured: D^{*+} , D^+ , D_s^+
- ► Kinematic region of the x-section measurement:
 - ▶ 3.5 < $p_T(D)$ < 100 GeV
 - ► $|\eta(D)| < 2.1$
- Data of 2010 at $\sqrt{s} = 7 \text{ TeV}$ are used
 - ▶ 1.04 nb⁻¹ collected with minimum-bias triggers used for $p_{\rm T} <$ 20 GeV range
 - ▶ 280 nb⁻¹ with jet triggers for $20 < p_T < 100 \text{ GeV}$ range

D meson reconstruction

$$D^{*+}
ightarrow D^0 \pi^+_s
ightarrow (K^- \pi^+) \pi^+_s$$

2000 Combinations / 0.01 GeV Combinations / 0.5 MeV ATLAS Vs = 7 TeV, 1.04 nb⁻¹ ATLAS (s = 7 TeV, 1.04 nb⁻¹ Data, 3.5 < p_(Kππ) < 20 GeV, |η(Kππ)| < 2.1 Data, 3.5 < p₊(Kππ_s) < 20 GeV, |η(Kππ_s)| < 2.1 1000 Fit: N(D[±]) = 1990 ± 100 (stat) 1500 750 1000 500 Right-charge combinations 500 Wrong-charge combinations 250 Fit: N(D*[±]) = 2140 ± 120 (stat) 16 0 1.8 1.9 2 140 145 150 155 160 165 170 m(Kππ_e) - m(Kπ) [MeV] 1250 Combinations / 0.01 GeV Combinations / 0.5 MeV ATLAS Vs = 7 TeV, 280 nb⁻¹ ATLAS √s = 7 TeV, 280 nb⁻¹ Data, 20 < p₊(Kππ) < 100 GeV, |η(Kππ)| < 2.1 1000 Data, 20 < p₊(Kππ_e) < 100 GeV, |η(Kππ₋)| < 2.1 Fit: $N(D^{\pm}) = 1730 \pm 100$ (stat) 300 750 Right-charge combinations 200 Wrong-charge combinations 500 Fit: N(D*1) = 732 ± 34 (stat) 100 250 0 L 1.6 1.8 1.9 2 140 145 150 155 170 m(Kππ_) - m(Kπ) [MeV]

$$D_s^+
ightarrow \phi \pi^+
ightarrow (K^+ K^-) \pi^+$$

JINR

 π_s^+ – soft pion

2.1 2.2

m(Kππ) [GeV]

2.1 2.2

m(Kππ) [GeV]

 $D^+ \rightarrow K^- \pi^+ \pi^+$

► Visible cross-sections measured:

	$\sigma^{\rm vis}(D^{*\pm})$		$\sigma^{\rm vis}(D^{\pm})$		$\sigma^{\rm vis}(D_s^{*\pm})$	
Range	low- $p_{\rm T}$	$high-p_T$	low- $p_{\rm T}$	$high-p_T$	low- $p_{\rm T}$	$high-p_T$
[units]	$[\mu b]$	[nb]	$[\mu b]$	[nb]	[µb]	[nb]
ATLAS	331 ± 36	988 ± 100	328 ± 34	888 ± 97	160 ± 37	512 ± 104
GM-VFNS	340^{+130}_{-150}	1000^{+120}_{-150}	350^{+150}_{-160}	980^{+120}_{-150}	147^{+54}_{-66}	470^{+56}_{-69}
FONLL	202^{+125}_{-79}	753^{+123}_{-104}	174^{+105}_{-66}	617^{+103}_{-86}	-	-
POWHEG+PYTHIA	158^{+179}_{-85}	600^{+300}_{-180}	134^{+148}_{-70}	480^{+240}_{-130}	62^{+64}_{-31}	225^{+114}_{-69}
POWHEG+HERWIG	137^{+147}_{-72}	690^{+380}_{-160}	121^{+129}_{-64}	580^{+280}_{-140}	51^{+50}_{-25}	268^{+107}_{-62}
MC@NLO	157^{+125}_{-72}	980^{+460}_{-290}	140^{+112}_{-65}	810^{+390}_{-260}	58^{+42}_{-25}	345^{+175}_{-87}

Statistical and systematics uncertainties generally of the same order

- ► Tracking efficiency, luminosity and branching fractions are the main systematics sources
- GM-VFNS approach shows the best description of data
- FONLL and NLO+PS approaches are generally below data, but still consistent within uncertainties

- GM-VFNS describes well both shape and normalization
- FONLL and NLO+PS are still consistent with data
- MC@NLO predicts harder p_T spectrum than in data

shows again a better description

 MC@NLO predicts a different η shape in the high-p_T range

Results: extrapolation

For extrapolation to the full phase space, *FONLL* predictions are used (including subtraction of $b \rightarrow c$ contribution)

▶ POWHEG+PYTHIA are used for extraction of fragmentation ratios

► Full *cc* production x-section:

 $\sigma_{c\bar{c}}^{\text{tot}} = 8.6 \pm 0.3 \text{ (stat)} \pm 0.7 \text{ (syst)} \pm 0.3 \text{ (lum)} \pm 0.2 \text{ (ff)}_{-3.4}^{+3.8} \text{ (extr) mb}$

Good agreement with ALICE measurement

Charm fragmentation ratios:

 $\gamma_{s/d} = 0.26 \pm 0.05 \,(\text{stat}) \pm 0.02 \,(\text{syst}) \pm 0.02 \,(\text{br}) \pm 0.01 \,(\text{extr})$

 $P_{\rm v}^d = 0.56 \pm 0.03 \,(\text{stat}) \pm 0.01 \,(\text{syst}) \pm 0.01 \,(\text{br}) \pm 0.02 \,(\text{extr})$.

- ▶ Good agreement with ALICE, HERA (*ep*) measurements and LEP averages
- P_v^d is smaller than expectation from naive spin-counting (0.75)
 - Questions the HQET assumption on charm fragmentation
- Also slightly smaller than string fragmentation and thermodynamical approach predictions (2/3)

Overall uniquely advanced measurement for LHC general-purpose detectors!

HQHCAP	Workshop,	30 Sep -	11 Oct	2019
--------	-----------	----------	--------	------

b hadron pair production measurement JHEP 1711 (2017) 062

- A number of recent measurement of b production highlighted certain disagreements between models and data
- Especially $b\bar{b}$ production at small open angles is sensitive to the details of various calculations, but only loosely constrained experimentally
- ▶ Studies of $H \rightarrow b\bar{b}$ much rely on modelling of $b\bar{b}$ production in this region
- Measure $b\bar{b}$ pair production
 - one b is identified via $H_b \rightarrow J/\psi + X$ decay (including feed-downs of heavier charmonia)
 - the other via $H_b \rightarrow \mu + Y$ (including cascades)
- Differential cross-sections are measured in
 - $\blacktriangleright \Delta \phi(J/\psi, \mu),$
 - $\blacktriangleright p_{\mathrm{T}}(J/\psi,\mu).$
 - $\Delta R(J/\psi\mu)$ overall and in bins of $p_T(J/\psi,\mu) < 20 \text{ GeV}$ and $p_T(J/\psi,\mu) > 20 \text{ GeV}$,
 - $\blacktriangleright \Delta y(J/\psi, \mu),$
 - average rapidity of J/ψ and μ , y_{boost} ,
 - \blacktriangleright m(J/ ψ , μ)
 - ▶ $p_{T}(J/\psi, \mu)/m(J/\psi, \mu)$ and its inverse
- ▶ 11.5 fb⁻¹ of $\sqrt{s} = 8$ TeV are used

- Fiducial volume definition:
 - $p_{T}(\mu) > 6 \text{ GeV}$ for all three muons
 - ▶ $|\eta(\mu)| < 2.3$ for the J/ψ muons and < 2.5 for the 3rd muon
- ► Full fiducial cross-section:

 $\sigma(B(\rightarrow J/\psi[\rightarrow \mu^+\mu^-] + X)B(\rightarrow \mu + X)) = 17.7 \pm 0.1(\text{stat}) \pm 2.0(\text{syst}) \text{ nb.}$

- Comparison with various models are performed:
 - Pythia 8
 - ► HERWIG++
 - MADGRAPH_AMC@NLOv2.2.2 interfaced to PYTHIA 8 (CKKW-L merging scheme with 15 GeV merging scale)
 - ► 4-FNS and 5-FNS modelling in MADGRAPH
 - ► SHERPA 2.1.1 (5-FNS), merging with ME+PS@LO prescription

Test PYTHIA 8 gluon splitting kernels

- Test gluon splitting description
 - Is the scale of α_s in splitting set by relative $p_{\rm T}$ or by mass?
- 6 options for the splitting kernels in PYTHIA 8
- PYTHIA does not describe these shapes
 - *p*_T-based scale splitting kernels behave better for close-by $b\bar{b}$

Option	Descriptions
label	
Opt. 1	The same splitting kernel, $(1/2)(z^2 + (1 - z)^2)$, for massive as massless quarks, only with
	an extra β phase-space factor. This was the default setting in PythiA8.1, and currently must
	also be used with the MC@NLO [50] method.
Opt. 4	A splitting kernel $z^2 + (1 - z)^2 + 8r_q z(1 - z)$, normalised so that the z-integrated rate is
	$(\beta/3)(1+r/2)$, and with an additional suppression factor $(1-m_{qq}^2/m_{dipole}^2)^3$, which reduces
	the rate of high-mass $q\bar{q}$ pairs. This is the default setting in Pythia8.2.
Opt. 5	Same as Option 1, but reweighted to an $\alpha_s(km_{aa}^2)$ rather than the normal $\alpha_s(p_T^2)$, with $k = 1$.
Opt. 5b	Same as Option 5, but setting $k = 0.25$.
Opt. 8	Same as Option 4, but reweighted to an $\alpha_8(km_{aa}^2)$ rather than the normal $\alpha_8(p_T^2)$, with $k = 1$.

Same as Option 8, but setting k = 0.25Opt. 8b

Table 1: Description of PYTHIA8 options. Options 2, 3, 6 and 7 are less well physically motivated and not considered here. The notation used is as follows: $r_a = m_a^2/m_{aa}^2 \beta = \sqrt{1-4r_a}$, with m_a the quark mass and m_{aa} the $q\bar{q}$ pair invariant mass.

HQHCAP Workshop, 30 Sep - 11 Oct 2019

Test various model predictions (1)

• HERWIG++ reproduces ΔR and $\Delta \phi$ best

- 4-FNS works better for ΔR and $\Delta \phi$ than 5-FNS (deviate to opposite sides from data)
- ▶ SHERPA is similar to 5-FNS MG, but the description is worse overall

Test various model predictions (2)

- ▶ MG and SHERPA demonstrate better agreement in Δy , PYTHIA and HERWIG++ worse
- ▶ In y_{boost} , a comparable picture across the predictions (expected to be sensitive to PDF)
- ► 4-FNS describes the high p_T/m region much better than 5-FNS; PYTHIA and HERWIG++ generally comparable

- Very comprehensive measurement of differential cross-section of bb production performed
 - ▶ in 10 kinematic observables
- Particularly sensitive to close-by $b\bar{b}$ pairs down to zero open angle
- Various predictions compared to data
 - ▶ different ME, PS models, 4-/5-flavour treatment; g splitting kernels
 - ► 4-FNS MADGRAPH_AMC@NLOv2.2.2 provides the best data description overall
 - \blacktriangleright $\rm Pythia$ and $\rm Herwig++$ are comparable and further tuning may improve data description
 - theoretical uncertainties not evaluated in this study
- New test of QCD, motivate the choice of calculations used to model b hadron production and their further tuning

Relative B_c^+/B^+ production measurement at 8 TeV (paper in preparation)

- \blacktriangleright B_c^+ is the only known weakly decaying particle made of two heavy quarks
 - Unique probe for heavy guark dynamics
- Production involves simultaneous producing $b\bar{b}$ and $c\bar{c}$
 - Expected to be dominated by $gg \rightarrow B_c^+ + b + \bar{c}$
 - \blacktriangleright x-section predicted at level 0.2% of inclusive $b\bar{b}$ production
- Measure the ratio: $\frac{\sigma(B_c^+) \cdot \mathcal{B}(B_c^+ \to J/\psi\pi^+)}{\sigma(B^+) \cdot \mathcal{B}(B^+ \to J/\psiK^+)}$
 - common systematic uncertainties mostly cancel
- Fiducial region of the measurement:
 - ▶ $p_{\rm T}(B) > 13 \,{\rm GeV}, |y(B)| < 2.3$
- Measure total production and differential in $p_{T}(B)$ and |y(B)|

B_c^+/B^+ production: results

Production ratio in the fiducial region

 $\frac{\sigma(B_c^+) \cdot \mathcal{B}(B_c^+ \to J/\psi\pi^+)}{\sigma(B^+) \cdot \mathcal{B}(B^+ \to J/\psi K^+)} =$ $(0.34 \pm 0.04 (stat.) \pm 0.02 (syst.) \pm 0.01$ lifetime)

- Lower than the LHCb result [1] for more forward and lower- p_{T} fiducial volume
- ▶ Fairly consistent with the CMS result [2] in a similar (but not identical) volume
- B_c^+ production decreases faster with $p_{\rm T}$ than that for B^+
- No evident rapidity dependence

Analysis bin	$\sigma(B_c^{\pm})/\sigma(B^{\pm}) \times \mathcal{B}(B_c^{\pm} \to J/\psi\pi^{\pm})/\mathcal{B}(B^{\pm} \to J/\psi K^{\pm})$
$p_{\rm T}(B) > 13 \text{ GeV}, y(B) < 2.3$	$(0.34 \pm 0.04_{\text{stat}} \pm 0.02_{\text{syst}} \pm 0.01_{\text{lifetime}})\%$
$22 > p_{\rm T}(B) > 13$ GeV, $ y(B) < 2.3$	$(0.44 \pm 0.07_{\text{stat}} \pm 0.04_{\text{syst}} \pm 0.01_{\text{lifetime}})\%$
$p_{\rm T}(B) > 22 \text{ GeV}, y(B) < 2.3$	$(0.24 \pm 0.04_{\text{stat}} \pm 0.01_{\text{syst}} \pm 0.01_{\text{lifetime}})\%$
$p_{\rm T}(B) > 13 \text{ GeV}, y(B) < 0.75$	$(0.38 \pm 0.06_{\text{stat}} \pm 0.04_{\text{syst}} \pm 0.01_{\text{lifetime}})\%$
$p_{\rm T}(B) > 13 \text{ GeV}, 2.3 > y(B) > 0.75$	$(0.29 \pm 0.05_{\text{stat}} \pm 0.02_{\text{syst}} \pm 0.01_{\text{lifetime}})\%$

High- $p_T J/\psi$ and $\psi(2S)$ production measurement (paper in preparation)

- Two different mechanisms for charmonium production:
 - Prompt: directly in pp interaction or via feed-down from heavier states
 - ▶ ~35% of J/ψ comes from feed-down; $\psi(2S)$ is produced almost directly
 - Theory: Non-Relativistic QCD (NRQCD) introduces a number of phenomenological parameters (LDMEs) extracted from Tevatron data fits
 - fails to build a comprehensive description
 - ► *Non-prompt*: from decays of *b* hadrons
 - Can be distinguished by fitting the pseudo proper lifetime
 - ► Theory: Fixed Order Next-to-Leading Logarithm (FONLL) perturbative $b\bar{b}$ production, data-driven fragmentation and *b* hadron decay model
- ATLAS measured before J/ψ and ψ(2S) differential x-sections at 7, 8 TeV- Eur. Phys.
 J. C 76 (2016) 283 C
 - Overall reasonable agreement for both approaches
- New measurement focuses on high-p_T charmonia paper in preparation
 - Use single-muon triggers (50 GeV muon p_T thershold) to cover the range 60-360 GeV
 - ► Full Run-2 dataset, 139 fb⁻¹ at 13 TeV
 - Double-differential x-section measurement

High- $p_T J/\psi$ and $\psi(2S)$ measurement: results

- Measured are
 - Prompt and non-prompt J/ψ and ψ(2S) x-sections
 - Non-prompt fraction for J/ψ and ψ(2S)
 - ψ(2S)/J/ψ production ratio for prompt and non-prompt
- *p*_T ranges goes well beyond what was achieved so far
- FONLL consistent at low-p_T, over-estimates high-p_T production

Charmonia in Pb + Pb

Eur. Phys. J. C 78 (2018) 762

- Probe deconfined quark-gluon plasma in A + Acollisions
 - Suppression of prompt charmonia could provide info about temperature of deconfinement
 - Possible enhancement: new quarkonium formation mechanism ($c\bar{c}$ recombination in medium)
 - Non-prompt charmonia allows studying b quark propagation through the medium
 - Possibly different mechanism (collisions, radiation) from $c\bar{c}$ suppression (colour screening)

- ▶ J/ψ production strongly suppressed in central collisions
 - very similar for prompt and non-prompt
 - not quite expected, as the two cases have different origins
- \blacktriangleright R_{AA} increases at high $p_{\rm T} > 12 \text{ GeV}$ for prompt J/ψ , flat for non-prompt

Semen Turchikhin JINR

Charmonia and bottomonia in p + Pb Eur. Phys. J. C 78 (2018) 171

 p + A collisions serve to disentangle cold nuclear matter effects (CNM)

- *R_{pPb}* factors for prompt and non-prompt *J*/ψ consistent with unity
 - no $p_{\rm T}$ or y^* dependence
 - weak modification for *J*/ψ production due to CNM effects
- $R_{pPb} < 1$ for $\Upsilon(1S)$ below 15 GeV
 - stronger nPDF shadowing for small x?

JINR

HQHCAP Workshop, 30 Sep - 11 Oct 2019

- ► Motivated by LHCb discovery of new resonances in $J/\psi p$ system from $\Lambda_b \rightarrow J/\psi p K^-$ decay
- ▶ No particle-ID in ATLAS select $J/\psi h_1 h_2$ candidates where $h_{1,2}$ can be p, K^{\pm} , π^{\pm}
 - $\Lambda_b \rightarrow J/\psi p K^-$ via intermediate Λ^{*0} 's and P_c 's
 - $B^0 \rightarrow J/\psi K^+\pi^-$ via intermediate $K^{\star 0}$'s and Z_c 's
 - $B^0 \rightarrow J/\psi \pi^+ \pi^-$ (via intermediate f^0 's and ρ 's)
 - $B_s^0 \rightarrow J/\psi K^+ K^-$ via intermediate f_s^0 and ϕ 's
 - $B_s^0 \to J/\psi \pi^+ \pi^-$ (via intermediate f^0 's and ρ 's)
- Simulation uses phase-space decays weighted with theoretical MEs
- ► To suppress light Λ^{*0} 's, K^{*0} 's, f^0 , ϕ 's, remove events with $M(\pi K)$ or $M(K\pi) < 1.55 \text{ GeV}$

JINR

Semen Turchikhin

(note in preparation)

23 / 26

Search for pentaquarks: fit

Fit uses signal region (5.59 $< m(J/\psi p K^-) <$ 5.65 GeV) and two control regions for B^0 and B_s^0

24 / 26

Search for pentaguarks: results

Data prefer the model with two pentaguarks: χ^2 /n.d.f. = 37.1/39, p = 55.7%

- Equally fine with four-pentguarks hypothesis
- Model w/o pentaguarks still not excluded: χ^2 /n.d.f. = 42.0/23, $p = 9.1 \cdot 10^{-3}$

 \triangleright P_{c1} mass slightly lower than LHCb result

Fit with all masses and widths fixed to LHCb gives χ^2 /n.d.f. = 49.0/43, p = 24.5%

Parameter	Value	LHCb value [5]
$N(P_{c1})$	$400^{+130}_{-140}(\text{stat})^{+110}_{-100}(\text{syst})$	_
$N(P_{c2})$	$150^{+170}_{-100}(\text{stat})^{+50}_{-90}(\text{syst})$	-
$N(P_{c1}+P_{c2})$	$540^{+80}_{-70}(\text{stat})^{+70}_{-80}(\text{syst})$	-
$\Delta \phi$	$2.8^{+1.0}_{-1.6}(\text{stat})^{+0.2}_{-0.1}(\text{syst})$ rad	-
$m(P_{c1})$	$4282^{+33}_{-26}(\text{stat})^{+28}_{-7}(\text{syst}) \text{ MeV}$	$4380 \pm 8 \pm 29 \text{ MeV}$
$\Gamma(P_{c1})$	$140_{-50}^{+77} (\text{stat})_{-33}^{+41} (\text{syst}) \text{ MeV}$	$205 \pm 18 \pm 86 \text{ MeV}$
$m(P_{c2})$	$4449^{+20}_{-29} (\text{stat})^{+18}_{-10} (\text{syst}) \text{ MeV}$	$4449.8 \pm 1.7 \pm 2.5$ MeV
$\Gamma(P_{c2})$	51^{+59}_{-48} (stat) $^{+14}_{-46}$ (syst) MeV	$39 \pm 5 \pm 19$ MeV

HQHCAP Workshop, 30 Sep - 11 Oct 2019

► A selection of ATLAS results on heavy flavour production was presented

- Production of open charm and beauty
- Physics of B_c^+ mesons
- Conventional and exotic hidden charm states
- ► A few more interesting results on backup slides :-)
- Do not hesitate to ask and discuss offline!
- Many B-physics measurements are only based on Run-1 yet the potential is nearly exhausted
- ► Full Run-2 dataset is still be be fully exploited stay tuned for many new results!

- [1] LHCb Collaboration, Measurement of B_c^+ Production in Proton-Proton Collisions at $\sqrt{s} = 8 \text{ TeV}$, Phys. Rev. Lett. 114 (2015) 132001
- [2] CMS Collaboration, Measurement of the ratio of the production cross sections times branching fractions of $B_c^{\pm} \rightarrow J/\psi\pi^{\pm}$ and $B^{\pm} \rightarrow J/\psi K^{\pm}$ and $B(B_c^{\pm} \rightarrow J/\psi\pi^{\pm}\pi^{\pm}\pi^{\mp})/B(B_c^{\pm} \rightarrow J/\psi\pi^{\pm})$ at $\sqrt{s} = 7$ TeV, JHEP 01 (2015) 063
- [3] ATLAS Collaboration, Observation of an Excited B[±]_c Meson State with the ATLAS Detector, Phys. Rev. Lett. 113 (2014) 212004 ^C
- [4] LHCb Collaboration, Search for excited B_c^+ states, JHEP 01 (2018) 138 \mathbb{C}^*
- [5] CMS Collaboration, Observation of Two Excited B_c^+ States and Measurement of the $B_c^+(2S)$ Mass in pp Collisions at $\sqrt{s} = 13$ TeV, Phys. Rev. Lett. 122 (2019) 132001
- [6] LHCb Collaboration, Observation of an excited B⁺_c state, Phys. Rev. Lett. 122 (2019) 232001 ☑

Backup slides

- Two principal possibilities to produce two objects in a pp collision:
- ► Single Parton Scattering (SPS)
- Double Parton Scattering (DPS)
 - effective cross-section σ_{eff} accounting for probability of the two processes to happen in a single *pp* collision: $\sigma_{\text{DPS}} = \frac{1}{2} \frac{\sigma(J/\psi)^2}{\sigma_{\text{eff}}}$
 - \blacktriangleright $\sigma_{\rm eff}$ is assumed to be universal across processes and energy scales
 - 12–20 mb values obtained earlier; however, indication of lower values from pair charmonia/bottommonia production questions the universality of σ_{eff}

SPS

Prompt J/ψ pair production – Eur. Phys. J. C 77 (2017) 76

- Measure production of prompt J/ψ pairs
- Use 11.4 fb⁻¹ at $\sqrt{s} = 8 \text{ TeV}$
- Kinematic range: $p_{\rm T}(J/\psi) > 8.5 \,{\rm GeV}$, $|\eta(J/\psi)| < 2.1$
- Per-event corrections
 - Efficiency of trigger and reconstruction
 - Muon acceptance
- Backgrounds
 - ▶ Non- J/ψ background separated by 2D mass fits
 - ▶ Non-prompt J/ψ contribution separated by 2D L_{xy} fits
 - per-event weights as a function of L_{xy}
 - (Small) pile-up background separated by 1D fit to d_z vertex distance
- ▶ Due to different resolution, the measurement is done separately in central $(|y(J/\psi)| < 1.05)$ and forward $(1.05 < |y(J/\psi)| < 2)$ regions
- ▶ DPS and SPS contributions are distinguished with a data-driven approach

Data-driven extraction of DPS contribution

- Templates for DPS and SPS contribution in $\Delta \phi(J/\psi J/\psi) \times \Delta y(J/\psi J/\psi)$
- DPS template event mixing
 - combine J/ψ 's from random different events, assuming their independent kinematics
 - normalize to $\Delta y > 1.8$, $\Delta \phi > \pi/2$ region
- SPS contribution
 - obtained by subtracting the DPS from data
- ▶ Per-event weights $w_{\text{DPS}}(\Delta\phi, \Delta y)$, $w_{\text{SPS}}(\Delta\phi, \Delta y)$ assigned to study the DPS/SPS spectra

Results: cross-sections (1)

Fiducial cross-section in $p_T(J/\psi) > 8.5$ GeV, $|y(J/\psi)| < 2.1, p_T(\mu) > 2.5$ GeV, $|\eta(\mu)| < 2.3, p_T(\mu) > 4$ GeV for two trigger muons 15.6 ± 1.3 (stat) ± 1.2 (syst) ± 0.2 (BF) ± 0.3 (lumi) pb, for $|y| < 1.05, 13.5 \pm 1.3$ (stat) ± 1.1 (syst) ± 0.2 (BF) ± 0.3 (lumi) pb, for $1.05 \le |y| < 2.1$

► Total cross-section in the J/ψ kinematic volume 82.2 ± 8.3 (stat) ± 6.3 (syst) ± 0.9 (BF) ± 1.6 (lumi) pb, for |y| < 1.05, 78.3 ± 9.2 (stat) ± 6.6 (syst) ± 0.9 (BF) ± 1.5 (lumi) pb, for $1.05 \le |y| < 2.1$

assume unpolarized production

• Two peaks in $p_{\rm T}(J/\psi J/\psi)$

- near zero away topology, back-to-back
- near higher p_T towards topology
 - back-to-back to another gluon
 - NLO effect

Results: cross-sections (2)

- Differential SPS/DPS cross-sections measured in the muon fiducial volume
- ▶ DPS: scaled to measured f_{DPS} only shape comparison
 - LO predictions based on Phys. Rev. D 95 (2017) 034029
- SPS
 - Colour-Singlet NRQCD w/o loops (NLO*) Phys. Lett. B 751 (2015) 479 C. Phys. Rev. Lett. 111 (2013) 122001
 - Scaled by ×1.85 to allow for feed-down

60 70

2.5 3

 $\Delta\phi(J/w,J/w)$

Results: cross-sections (2)

- Overall good agreement for DPS contribution
- Some discrepancies in total cross-section for away topology
- ➤ Significant fraction of events with towards topology → LO predictions alone not enough to describe it

= 8 TeV, 11,4 fb

DPS Estimate

9.5% ± 2.1%

DPS Pred.

Data

JINR

30 40 50 60 70

p_(J/ψ J/ψ) [GeV]

Results: DPS measurements

- σ_{eff} can be measured as $\sigma_{\text{eff}} = \frac{1}{2} \frac{\sigma(J/\psi)^2}{f_{\text{DPS}} \times \sigma(J/\psi J/\psi)}$
 - $\sigma(J/\psi)$ from the ATLAS measurement Eur. Phys. J. C 76 (2016) 283
- $f_{\text{DPS}} = (9.2 \pm 2.1(\text{stat.}) \pm 0.5(\text{syst.}))\%$
- $\sigma_{\text{DPS}} = 14.8 \pm 3.5(\text{stat.}) \pm 1.5(\text{syst.}) \pm 0.2(\text{BF}) \pm 0.3(\text{lumi.}) \text{ pb}$
- $\sigma_{\rm eff} = 6.3 \pm 1.6 ({\rm stat.}) \pm 1.0 ({\rm syst.}) \pm 0.1 ({\rm BF}) \pm 0.1 ({\rm lumi.}) {\rm ~mb}$
- LHC results with quarkonia are close to each other and to those of D0, but *lower* than measurements with other probes
 - Questions the assumption of σ_{eff} universality
 - ► di-J/ψ, J/ψ-Υ, 4-jet processes are dominated by gg interactions
 - \rightarrow probe gluon distributions in proton

CMS ($\sqrt{s} = 8 \text{ TeV}, \Upsilon(1S) + \Upsilon(1S), 2016$) LHCb ($\sqrt{s} = 13$ TeV, $J/\psi + J/\psi$, 2017) CMS + Lansberg, Shao ($\sqrt{s} = 7$ TeV, $J/\psi + J/\psi$, 2014) ATLAS ATLAS ($\sqrt{s} = 8$ TeV, $J/\psi + J/\psi$, 2016) HH DØ ($\sqrt{s} = 1.96$ TeV, $J/\psi + J/\psi$, 2014) нон DØ ($\sqrt{s} = 1.96$ TeV, J/ $\psi + \Upsilon$, 2016) HAH LHCb ($\sqrt{s} = 7\&8$ TeV, $\Upsilon(1S) + D^{0,+}$, 2015) HV4 LHCb ($\sqrt{s} = 7$ TeV, $J/\psi + \Lambda_c^+$, 2012) LHCb ($\sqrt{s} = 7$ TeV, $J/\psi + D_{*}^{+}$, 2012) ----LHCb ($\sqrt{s} = 7$ TeV, $J/\psi + D^+$, 2012) LHCb ($\sqrt{s} = 7$ TeV, $J/\psi + D^0$, 2012) ATLAS ($\sqrt{s} = 7$ TeV, 4 jets, 2016) CDF ($\sqrt{s} = 1.8$ TeV, 4 jets, 1993) UA2 ($\sqrt{s} = 630$ GeV, 4 jets, 1991) AFS ($\sqrt{s} = 63$ GeV, 4 jets, 1986) DØ ($\sqrt{s} = 1.96$ TeV, $2\gamma + 2$ jets, 2016) DØ ($\sqrt{s} = 1.96$ TeV, $\gamma + 3$ jets, 2014) H^AH DØ ($\sqrt{s} = 1.96$ TeV, $\gamma + b/c + 2$ jets, 2014) DØ ($\sqrt{s} = 1.96$ TeV, $\gamma + 3$ jets, 2010) CDF ($\sqrt{s} = 1.8$ TeV, $\gamma + 3$ jets, 1997) HH HI ATLAS ($\sqrt{s} = 8$ TeV, $Z + J/\psi$, 2015) CMS ($\sqrt{s} = 7$ TeV, W + 2 jets, 2014) ATLAS ($\sqrt{s} = 7$ TeV, W + 2 jets, 2013) 0 5 10 15 20 25 30

 $\sigma_{_{eff}}$ [mb]

year)

final state,

(energy,

Experiment

35 / 26

$\psi(2S)$ and X(3872) production

- ► X(3872) was observed by Belle in 2003, later confirmed by others, J^{PC} = 1⁺⁺
- No clear theoretical picture yet
 - ► Loosely bound $D^0 \overline{D}^{*0}$ molecule
 - $\chi_{c1}(2P)$ state, or the mixture with $D^0 \overline{D}^{*0}$
 - Tetraquark (diquark + diquark)
- ATLAS measurement can help to answer some of the questions
 - ► Measure in J/ψπ⁺π⁻ mode, together with well known ψ(2S) state
 - helps to reduce systematics in ratios
 - ▶ Use 11.4 fb⁻¹ @ 8 TeV data
 - Limit to |y| < 0.75 for the best mass resolution
 - Measure differential cross-sections over 5 $p_{\rm T}$ bins
 - Use 4 bins of pseudo proper lifetime to extract prompt/non-prompt components

X(3872) lifetime hypotheses

- Measure the $X(3872)/\psi(2S)$ ratio
 - $R_B = \frac{\mathcal{B}(B \to X(3872) + \text{any})\mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-)}{\mathcal{B}(B \to \psi(2S) + \text{any})\mathcal{B}(\psi(2S) \to J/\psi\pi^+\pi^-)}$
- ► Single lifetime hypothesis
 - Assume non-prompt ψ(2S) and X(3872) produced from the same mix of parent b hadrons
 - ► same lifetime for $\psi(2S)$ and X(3872) in each p_T bin $R_B^{1L} = (3.95 \pm 0.32(\text{stat.}) \pm 0.08(\text{syst.})) \times 10^{-2}$
 - X(3872) lifetime shorter in low- p_T bins
 - Possible B_c^+ contribution?
- Double lifetime hypothesis: long-lived (LL) and short-lived (SL) components
 - τ_{LL} determined from $\psi(2S)$ fits, allowing for some SL contribution
 - τ_{SL} from simulation, varying B_c^+ lifetime
 - Calculate X(3872) fraction from B_c^+

 $\frac{\sigma(pp \to B_c^+ + any)\mathcal{B}(B_c^+ \to X(3872) + any)}{\sigma(pp \to \text{non-prompt } X(3872) + any)} = (25 \pm 13(\text{stat.}) \pm 2(\text{syst.}) \pm 5(\text{spin}))\%$

X(3872) production cross-section

- Prompt production described well by NRQCD
 - X(3872) considered as a mixture of $\chi_c(2P)$ and $D^0 \overline{D}^{*0}$ molecule
- Non-prompt compared to FONLL calculations
 - Predictions for $\psi(2S)$ recalculated using kinematic template of $X(3872)/\psi(2S)$
 - Bs estimated from CDF data
 - Factor 4–8 above the data, larger discrepancy at high $p_{\rm T}$
- Non-prompt production fraction: no $p_{\rm T}$ dependence, agreement with CMS data

 J/ψ and ψ (2S) fits

39 / 26

J/ψ and $\psi(2S)$ production @ 8 TeV(Eur. Phys. J. C 76 (2016) 283 (2): prompt

Prompt J/ψ

Prompt $\psi(2S)$

J/ψ: good description by NRQCD across range of p_T, no y dependence
 ψ(2S) (no significant feed-down): NRQCD mostly well describes data
 some deterioration at high p_T

J/ψ and $\psi(2S)$ production @ 8 TeV(Eur. Phys. J. C 76 (2016) 283 (2): non-prompt

FONLL predicts slightly harder p_{T} spectra for both J/ψ and $\psi(2S)$

J/ψ and $\psi(2S)$ production @ 8 TeV(Eur. Phys. J. C 76 (2016) 283 C): ratios

 $\psi(2S)$ to J/ψ ratio for prompt/non-prompt

Non-prompt fraction for J/ψ and $\psi(2S)$

- Ratio of J/ψ to $\psi(2S)$ flat across the whole p_T range
- Prompt J/ψ (ψ(2S)) dominate over non-prompt at low p_T, but the non-prompt exceed after ~20 GeV (~30 GeV)

Charmonia in p + Pb: (nS) suppression

▶ Double ratios $\rho_{pPb}^{O(nS)/O(1S)}$ in p + Pb

• Relative $\psi(2S)$ suppression increases with centre-of-mass rapidity, 1σ significance trend

- Both $\Upsilon(2,35)$ suppressed by 2σ in the full $p_{\rm T} < 40$ GeV and $-2 < y^* < 1.5$ region
- $\rho^{\psi(2S)/\psi(1S)}$ and $\rho^{\Upsilon(2S)/\Upsilon(1S)}$ decreases towards more central collisions; $\rho^{\Upsilon(3S)/\Upsilon(1S)}$ statistically limited
- Stronger effect of CNM in the excited states production compared to ground state

Charmonia in Pb + Pb: (*nS*) suppression

- Expect $\rho_{PbPb}^{O(nS)/O(1S)} = 1$ for non-prompt charmonia
 - originate from b quark loosing energy in the medium and hadronizing outside
- \blacktriangleright The double ratio indeed consistent with unity for non-prompt, and < 1 for prompt
 - \blacktriangleright consistent with the interpretation that the tighter bound J/ψ survives in the hot and dense medium with higher probability than more loosely bound $\psi(2S)$
 - ▶ also consistent with radiative energy loss scenario (Phys. Lett. B 767 (2017) 10 C)

Pentaquark fit with four pentaquarks hypothesis

Pentaquarks: event selection

- $\blacktriangleright\,$ 2 muons from J/ψ decay with mass 3097 $\pm\,$ 290 GeV
- 2 muon tracks + 2 hadron tracks vertex fit: dimuon mass constrained to J/ψ mass, Λ⁰_b to point to primary vertex, χ²/n.d.f. < 16/8;
- ▶ 2 hadron tracks, with each of them to be assigned different mass hypothesis (proton or kaon); $p_T > 2.5 \text{ GeV}$ for proton candidate and $p_T > 1.8 \text{ GeV}$ for kaon candidate
- Transverse decay length $L_{xy}(\Lambda_b^0) > 0.7 \text{ mm}$;
- $p_T(\Lambda_b^0) / \sum p_T(\text{tracks}) > 0.2$, where sum is taken over all tracks originating from PV;
- ► $p_{\mathsf{T}}(\mu^{\pm}) > 4 \text{ GeV}, \ |\eta(\mu^{\pm})| < 2.3, \ p_{\mathsf{T}}(\Lambda_b^0) > 12 \text{ GeV}, \ |\eta(\Lambda_b^0)| < 2.1;$
- Inv. mass of hadron tracks (in Kπ and πK mass hypotheses): M(Kπ) > 1.55 GeV and M(πK) > 1.55 GeV, to suppress decays via light intermediate resonances;
- $\cos \theta^{\star}$ between proton and $J/\psi p$ system in $J/\psi p$ rest frame > -0.5;
- $\cos \theta^{\star}$ between kaon and Λ_b^0 candidate in Λ_b^0 candidate rest frame > -0.8;
- $|\cos \theta^{\star}|$ between kaon and Λ^{*0} in Λ^{*0} rest system < 0.85;
- Events for $J/\psi p$ signal search are taken in window $M(J/\psi pK) \in 5620 \pm 30$ MeV;
- Subtraction of distributions with two same sign hadron tracks is applied before fits to data;

Source	$\sigma^{\rm vis}(D^{*\pm})$		$\sigma^{\rm vis}(D^{\pm})$		$\sigma^{\rm vis}(D_s^{\pm})$	
	Low- $p_{\rm T}$	$\mathrm{High}\text{-}p_\mathrm{T}$	Low- $p_{\rm T}$	$\operatorname{High}-p_{\mathrm{T}}$	Low- $p_{\rm T}$	$\operatorname{High-}\!p_{\mathrm{T}}$
Trigger (δ_1)	-	$^{+0.9}_{-1.0}\%$	-	$^{+0.9}_{-1.0}\%$	-	$^{+0.9}_{-1.0}\%$
Tracking (δ_2)	$\pm 7.8\%$	$\pm 7.4\%$	$\pm 7.7\%$	$\pm 7.4\%$	$\pm 7.6\%$	$\pm 7.4\%$
D selection (δ_3)	$^{+2.8}_{-1.6}\%$	$^{+1.7}_{-1.4}\%$	$^{+1.6}_{-1.0}\%$	$^{+0.9}_{-0.6}\%$	$^{+2.6}_{-1.6}\%$	$^{+1.1}_{-0.9}\%$
Signal fit (δ_4)	$\pm 1.3\%$	$\pm 0.9\%$	$\pm 1.3\%$	$\pm 1.5\%$	$\pm 6.4\%$	$\pm 5.3\%$
Modelling (δ_5)	$^{+1.0}_{-1.7}\%$	$^{+2.7}_{-2.3}\%$	$^{+2.3}_{-2.6}\%$	$^{+2.9}_{-2.4}\%$	$^{+1.7}_{-2.4}\%$	$^{+2.8}_{-2.4}\%$
Size of MC sample (δ_6)	$\pm 0.6\%$	$\pm 0.9\%$	$\pm 0.8\%$	$\pm 0.8\%$	$\pm 2.9\%$	$\pm 3.1\%$
Luminosity (δ_7)	$\pm 3.5\%$	$\pm 3.5\%$	$\pm 3.5\%$	$\pm 3.5\%$	$\pm 3.5\%$	$\pm 3.5\%$
Branching fraction (δ_8)	$\pm 1.5\%$	$\pm 1.5\%$	$\pm 2.1\%$	$\pm 2.1\%$	$\pm 5.9\%$	$\pm 5.9\%$

	LEP data
$f(c \rightarrow D^{*+})$	$0.236 \pm 0.006 \pm 0.003$
$f(c \to D^+)$	$0.225 \pm 0.010 \pm 0.005$
$f(c \to D_s^+)$	$0.092 \pm 0.008 \pm 0.005$
$f(b \to D^{*\pm})$	$0.221 \pm 0.009 \pm 0.003$
$f(b\to D^\pm)$	$0.223 \pm 0.011 \pm 0.005$
$f(b\to D_s^\pm)$	$0.138 \pm 0.009 \pm 0.006$

Option	Descriptions
label	
Opt. 1	The same splitting kernel, $(1/2)(z^2 + (1 - z)^2)$, for massive as massless quarks, only with
	an extra β phase-space factor. This was the default setting in PythiA8.1, and currently must
	also be used with the MC@NLO [50] method.
Opt. 4	A splitting kernel $z^2 + (1 - z)^2 + 8r_q z(1 - z)$, normalised so that the z-integrated rate is
	$(\beta/3)(1+r/2)$, and with an additional suppression factor $(1-m_{qq}^2/m_{dipole}^2)^3$, which reduces
	the rate of high-mass $q\bar{q}$ pairs. This is the default setting in Pythia8.2.
Opt. 5	Same as Option 1, but reweighted to an $\alpha_s(km_{aa}^2)$ rather than the normal $\alpha_s(p_T^2)$, with $k = 1$.
Opt. 5b	Same as Option 5, but setting $k = 0.25$.
Opt. 8	Same as Option 4, but reweighted to an $\alpha_s(km_{aa}^2)$ rather than the normal $\alpha_s(p_T^2)$, with $k = 1$.
Opt. 8b	Same as Option 8, but setting $k = 0.25$.

Table 1: Description of Pythia8 options. Options 2, 3, 6 and 7 are less well physically motivated and not considered here. The notation used is as follows: $r_q = m_q^2/m_{qq}^2$, $\beta = \sqrt{1 - 4r_q}$, with m_q the quark mass and m_{qq} the $q\bar{q}$ pair invariant mass.

- Fiducial volume definition:
 - $p_T(\mu) > 6 \text{ GeV}$ for all three muons
 - ▶ $|\eta(\mu)| < 2.3$ for the J/ψ muons and < 2.5 for the 3rd muon
- Signal extraction, in each bin
 - Simultaneous fit to J/ψ mass and pseudo-proper lifetime to extract the yield of J/ψ from b

Fiducial volume definition:

- $p_T(\mu) > 6 \text{ GeV}$ for all three muons
- ▶ $|\eta(\mu)| < 2.3$ for the J/ψ muons and < 2.5 for the 3rd muon

Signal extraction, in each bin

- Simultaneous fit to J/ψ mass and pseudo-proper lifetime to extract the yield of J/ψ from b
- Yield of 3rd muon from b determined by fit to d₀/σ(d₀) and BDT output
 - ▶ in signal-enriched region of $\tau > 0.25 \, \text{mm}/c$

JINR

51 / 26

Fiducial volume definition:

- $p_{T}(\mu) > 6 \text{ GeV}$ for all three muons
- ▶ $|\eta(\mu)| < 2.3$ for the J/ψ muons and < 2.5 for the 3rd muon

Signal extraction, in each bin

- Simultaneous fit to J/ψ mass and pseudo-proper lifetime to extract the yield of J/ψ from b
- Yield of 3rd muon from b determined by fit to d₀/σ(d₀) and BDT output
 - ▶ in signal-enriched region of $\tau > 0.25 \, \text{mm}/c$
- Subtract irreducible backgrounds
 - $B_c^+
 ightarrow J/\psi \mu^+ X$, prompt charm, fake muons

JINR

HQHCAP Workshop, 30 Sep - 11 Oct 2019

Fiducial volume definition:

- $p_T(\mu) > 6 \text{ GeV}$ for all three muons
- ▶ $|\eta(\mu)| < 2.3$ for the J/ψ muons and < 2.5 for the 3rd muon

Signal extraction, in each bin

- Simultaneous fit to J/ψ mass and pseudo-proper lifetime to extract the yield of J/ψ from b
- Yield of 3rd muon from b determined by fit to d₀/σ(d₀) and BDT output
 - in signal-enriched region of $\tau > 0.25 \,\mathrm{mm}/c$
- Subtract irreducible backgrounds
 - $B_c^+
 ightarrow J/\psi \mu^+ X$, prompt charm, fake muons
- Extrapolate to full τ range
- Correct for detector resolution effects

