

Outline

Open heavy-flavours at ALICE

1/10/2019

HF production cross-sections at mid-rapidity

HF production cross-sections at mid-rapidity

HF production cross-sections at mid-rapidity

D meson ratios

Cross-section ratios

ALICE

☑ D mesons are studied at the LHC at different collision energies (2.76, 5.02, 7, 8 and 13 TeV)

☑ Cross-section ratios do not show significant p_T dependence → not large difference between fragmentation to pseudoscalar (D⁰, D⁺ and D_s) and vector (D^{*+}) mesons, nor to strange and non-strange mesons

1/10/2019

D meson ratios

1/10/2019

Central to forward ratio

ALICE Coll, JHEP 1909 (2019) 008

1/10/2019

1/10/2019

p_ [GeV/c]

1/10/2019

1/10/2019

Beauty via non-prompt D⁰

1/10/2019

Λ_c production in pp, p-Pb

Λ_c production in pp, p-Pb

1/10/2019

Λ_c production in pp, p-Pb

Ξ_c production in pp

1/10/2019

Going back to the total cross-section

D tagged jets @ 5.02 TeV

D tagged jets @ 13 TeV

1 4

Outline

D-meson production: p-Pb @ 5.02 TeV

16

D-meson R_{pA}

D-meson R_{pA}

D-meson ratios: pp vs p-Pb

1/10/2019

1/10/2019

Outline

1/10/2019

Alessa

20

1/10/2019

Alessa

Elliptic flow v₂ as a measure of collectivity

Alessa

p_T [GeV/c]

Heavy-flavour collectivity in p-Pb?

HF-decay leptons flow in p-Pb

Collectivity in the D-meson sector?

1/10/2019

Outline

Observable: RAA

Solution Production of hard probes in AA expected to scale with the number of nucleon-nucleon collisions N_{coll} (binary scaling)

Observable: Nuclear Modification Factor

$$R_{AA}^{D}(p_{T}) = \frac{dN_{AA}^{D}/dp_{T}}{\langle T_{AA} \rangle \times d\sigma_{pp}^{D}/dp_{T}} = \frac{QCD \ Medium}{QCD \ vacuum}$$

What are the possibilities?

- If no nuclear effects present: $R_{AA} = 1$
- Effects of the hot and dense medium produced in the collision breakup binary scaling: $R_{AA} \neq 1$ $R_{AA}(c,b,s) < R_{AA}(c) < R_{AA}(b)$

several caveat to take into account!!

Solution But also cold nuclear matter effects may lead to $R_{AA} \neq 1$ (needs solid pA reference)

1/10/2019

p_ [GeV/c

R_{AA} measurements

1/10/2019

R_{AA} measurements

Double ratio: $(D_s/D^0)_{Pb-Pb}/(D_s/D^0)_{pp}$

Non-strange D-meson ratios

What about baryon-to-meson ratio?

What about baryon-to-meson ratio?

What about baryon-to-meson ratio?

1/10/2019

Beauty production

1/10/2019

 $\mathbf{\nabla}$

 $\mathbf{\nabla}$

Alessandro Grelli

 $\mathbf{\nabla}$

Summary

Centrality in p-Pb collisions (ALICE)

Centrality in p-Pb collisions: Phys. Rev. C 91 (2015) 064905

biases in the determination of $\langle N_{coll} \rangle$

- multiplicity fluctuations, jet-veto bias, geometrical bias
- Lose correlations between N_{part}, multiplicity and impact parameter b
- bias depends on estimator used for multiplicity determination

Experimentally:

V0A: <N_{coll}> determined by Glauber fit of V0 amplitude **ZNA:** <N_{coll}> obtained with a "Hybrid method"

- slice events in ZN energy (Pb going side)
- <N_{coll}> in ZN energy class obtained by scaling the minimum bias value with the ratio between the average charged-particle multiplicity at mid rapidity in the same class and that measured in the minimum bias sample

$$Q_{\rm pPb} = \frac{({\rm d}N^{\rm D}/{\rm d}p_{\rm T})_{\rm pPb}}{\langle T_{\rm pPb} \rangle \times ({\rm d}\sigma^{\rm D}/{\rm d}p_{\rm T})_{\rm pp}} \qquad \langle T_{\rm pPb} \rangle = \frac{\langle N_{\rm coll} \rangle_i}{\sigma_{\rm NN}}$$

investigate charm production in p-Pb collisions w.r.t. pp collisions: possible multiplicity dependent modification of the p_T spectra in p-Pb?

a.grelli@

D mesons production vs rapidity at mid-rapidita

a.grelli@uu.nl

Open-beauty with ALICE

a.grelli@uu.nl

D tagged jets R_{pPb}

NW

D mesons prompt fraction

